

Autonomous Scaled Race-Car Platform for Safe Aggressive Vehicle Maneuvers (RU-Racer)

Alborz Jelvani, Dimitri Duma, Aliasghar Arab, Kuo Chen, Jiaxing Yu, Jingang Yi (Faculty Advisor) Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, NJ 08854, USA

Motivation

Enable safety maneuvers for autonomous vehicles in the consistently increasing self-driving vehicles market and improving vehicle safety.

Objective

Develop a capable autonomous scaled race-car platform for performing aggressive maneuvers in an indoor controlled environment (RU-Racer).

Research Aims

A scaled racecar platform capable of performing real-vehicle aggressive maneuverers.
A distributed computing approach for providing efficient control and integration with multiple machines.
An experimental testbed that will integrate control of RU-racer on a road-like surface for aggressive maneuvers.

- Integrate multiple sensors into the RU-racer platform and embed the system with the Jetson TX2 and ROS.
- Integrate sparse-RRT* algorithm for generating minimumtime feasible trajectory with nonlinear model predictive control (NMPC) to maintain safety region.
- Extend the embedded system design to an autonomous scaled truck platform for outdoor applications (RU-Rover).

Up-to-Date Research Results

• Developed the RU-Racer platform and conducted closedenvironment experiments.

Ongoing Work

Approach

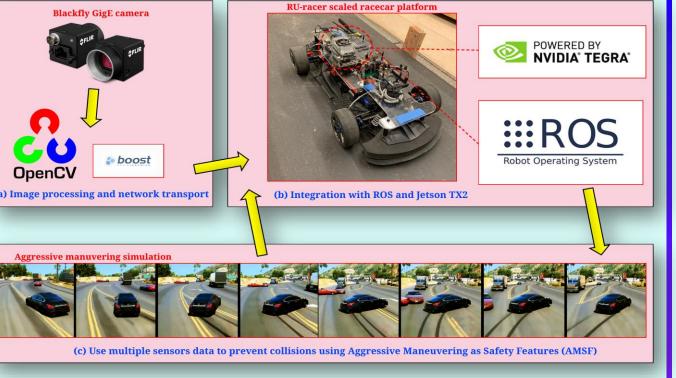
- Develop a motion tracking system to provide real-time information to RU-Racer.
- Integrate infrared markers into motion tracking system.
- Development of the RU-Rover platform for outdoor applications.

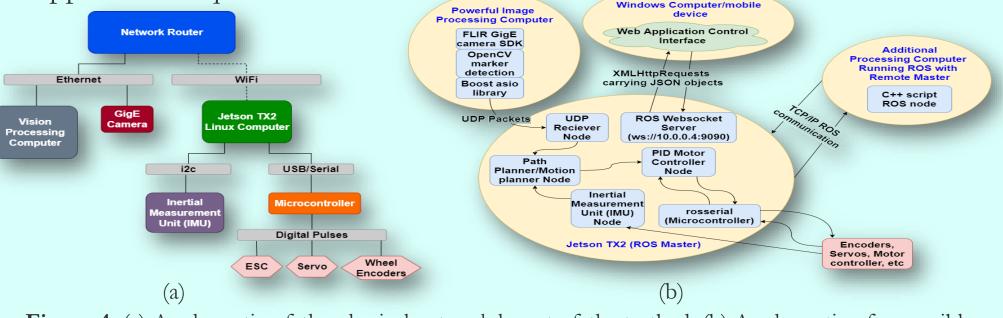
Acknowledgments

• Custom Jetson TX2 carrier board was developed by Prof. Yan Wan's team at the University of Texas at Arlington.

• Overview Design of the RU-Racer

- A circular racetrack with an overlooking stationary camera.
- RU-Racer is localized through 3 LED markers.
- Data is transmitted over the network and processed in ROS.
- Commands are sent back to RU-Racer for control.

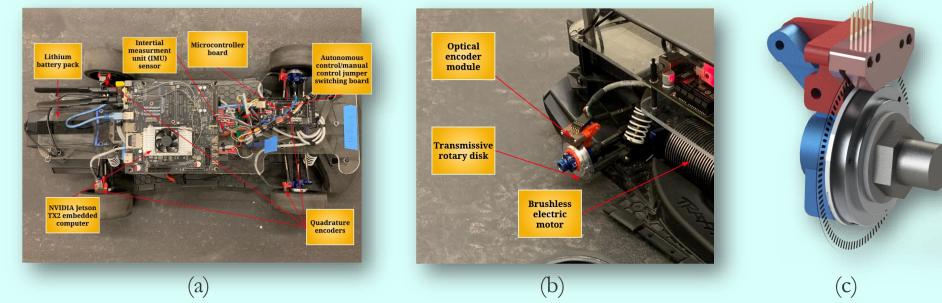


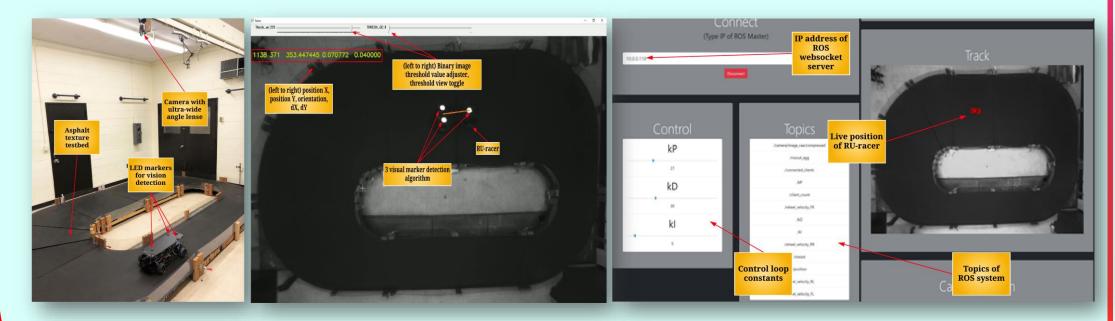

Figure 1: Diagram of RU-Racer system usage layout.

• Hardware and Software Architecture Design


- With custom designed optical encoder assemblies, RU-Racer provides angular velocities for individual wheels.
- An onboard microcontroller can perform closed-loop control of vehicle velocity, steering, and monitoring of wheel speeds.

• Distributed Computing Layout


- Process intensive tasks are computed on stationary systems and relayed to RU-racer's embedded system over the network.
- This design is modular and additional nodes can be added at the desire of application requirements.


Figure 4: (a) A schematic of the physical network layout of the testbed. (b) A schematic of a possible network communication layout utilizing ROS and distributed computing.

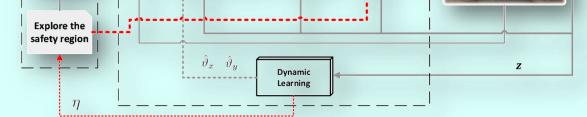

- Custom web interface allows the monitoring of RU-Racer in real time or for data playback after running experiments.
- OpenCV application tracks RU-Racers' motion and orientation data.

Figure 2: The RU-Racer's sensors and electronics. (a) Top of view overview of hardware electronics without cover. (b) Close-up view of wheel encoder integration. (c) A 3-D model of the encoder mount design.

(a) (b) (c) **Figure 3:** (a) The experimental testbed setup. (b) Screenshot of OpenCV application developed to track the RU-Racer and provide motion data to ROS. (c) Web interface developed to monitor RU-Racer. In order to implement AMSF into RUracer, spars RRT* and sum-of-squares (SOS) optimization are offloaded to a remote computer and processed much faster than the embedded system on RUracer.

Figure 5: A schematic of the control systems design for implementing AMSF, note the edge computing block.

• Experimental Performance Evaluation

Figure 6: (a) The trajectory generated by sparse-RRT*. (b) Vehicle tracking performance of multiple autonomous controllers. (c) The vehicle velocity profiles from multiple autonomous controllers.

Figure 7: (Left to right) The RU-Rover performing a manual controlled stunt maneuver. This platform is in development and will be used for applications such as stunt maneuvers and item delivery.

• References

- A. Arab, K. Yu, J. Yi, and D. Song, "Motion planning for aggressive autonomous vehicle maneuvers," in *Proc. IEEE Conf. Automat. Sci.Eng.*, Dallas, TX, 2016, pp. 221–226.
- A. Arab, K. Yu, J. Yi, and Y. Liu, "Motion control of autonomous aggressive vehicle maneuvers," in *Proc. IEEE/ASME Int. Conf. Adv.Intelli. Mechatronics*, 2016, pp. 1663–1668.