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J Motivation * Integrate multiple sensors into the RU-racer platform and

Enable safety maneuvers for autonomous vehicles in the embed the system with the Jetson TX2 and ROS.

consistently increasing self-driving vehicles market and » Integrate sparse-RRT* algorithm for generating minimum-

improving vehicle safety. time feasible trajectory with nonlinear model predictive

d Objective control (NMPC) to maintain safety region.

* Extend the embedded system design to an autonomous

Develop a capable autonomous scaled race-car platform for T
scaled truck platform for outdoor applications (RU-Rover).

performing aggressive maneuvers in an indoor controlled

environment (RU-Racer). - Up-to-Date Research Results

] Research Aims * Developed the RU-Racer platform and conducted closed-
environment experiments.

* A scaled racecar platform capable of performing real-

vehicle aggressive maneuverers. H Ongoing Work
* A distributed computing approach for providing efficient * Integrate infrared markers into motion tracking system.

control and integration with multiple machines. * Development of the RU-Rover platform for outdoor
* An experimental testbed that will integrate control of RU- applications.

racer on a road-like surface for aggressive maneuvers.
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* Overview Design of the RU-Racer * Distributed Computing Layout
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implementing AMSE, note the edge computing block.
* Experimental Performance Evaluation
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Figure 2: The RU-Racer’s sensors and electronics. (a) Top of view overview of hardware electronics without ES(S)
cover. (b) Close-up view of wheel encoder integration. (c) A 3-D model of the encoder mount design. TEfncze (5 () e esiosy s (5 spamse RS, (5) Vsl b mefommnes o mulik
autonomous controllers. (c) The vehicle velocity profiles from multiple autonomous controllers.
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Figure 7: (Left to right) The RU-Rover performing a manual controlled stunt maneuver. This platform is in
development and will be used for applications such as stunt maneuvers and item delivery.
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